

Welcome to pypdata-google-auth’s documentation!

The pydata_google_auth module provides a wrapper to authenticate to
Google APIs, such as Google BigQuery.

Contents:

	Installation
	Conda

	Pip

	Install from Source

	Dependencies

	Introduction
	User credentials

	Default credentials

	Command-line Reference
	Saving user credentials with login

	Loading user credentials with print-token

	API Reference

	Contributing to pydata-google-auth
	Where to start?

	Bug reports and enhancement requests

	Working with the code

	Contributing to the code base

	Contributing your changes to pydata-google-auth

	Changelog
	1.8.2 / (2023-08-01)

	1.8.1 / (2023-07-10)

	1.8.0 / (2023-05-09)

	1.7.0 / (2023-02-07)

	1.6.0 / (2023-02-07)

	1.5.0 / (2023-01-09)

	1.4.0 / (2022-03-14)

	1.3.0 / (2021-12-03)

	1.2.0 / (2021-04-21)

	1.1.0 / (2020-04-23)

	1.0.0 / (2020-04-20)

	0.3.0 / (2020-02-04)

	0.2.1 / (2019-12-12)

	0.2.0 / (2019-12-12)

	0.1.3 / (2019-02-26)

	0.1.2 / (2019-02-01)

	0.1.1 / (2018-10-26)

	0.1.0 / (2018-10-23)

	Privacy
	Google account and user data

	Policies for application authors

Indices and tables

	Index

	Module Index

	Search Page

Installation

You can install pydata-google-auth with conda, pip, or by installing from source.

Conda

$ conda install pydata-google-auth --channel conda-forge

This installs pydata-google-auth and all common dependencies, including google-auth.

Pip

To install the latest version of pydata-google-auth: from the

$ pip install pydata-google-auth -U

This installs pydata-google-auth and all common dependencies, including google-auth.

Install from Source

$ pip install git+https://github.com/pydata/pydata-google-auth.git

Dependencies

This module requires following additional dependencies:

	google-auth [https://github.com/googleapis/google-auth-library-python]: authentication and authorization for Google’s API

	google-auth-oauthlib [https://github.com/googleapis/google-auth-library-python-oauthlib]: integration with oauthlib [https://github.com/idan/oauthlib] for end-user authentication

Introduction

pydata-google-auth wraps the google-auth [https://google-auth.readthedocs.io/] and google-auth-oauthlib [https://google-auth-oauthlib.readthedocs.io/] libraries to make it easier
to get and cache user credentials for accessing the Google APIs from
locally-installed data tools and libraries.

Warning

To use this module, you will need a Google account and developer project.
Follow the Using the BigQuery sandbox [https://cloud.google.com/bigquery/docs/sandbox] instructions to get
started with big data on Google Cloud without a credit card.

See the Google Cloud Platform authentication guide [https://cloud.google.com/docs/authentication/] for best practices on
authentication in production server contexts.

User credentials

Use the pydata_google_auth.get_user_credentials() to get user
credentials, authenticated to Google APIs.

By default, pydata-google-auth will listen for the credentials on a local
webserver, which is used as the redirect page from Google’s OAuth 2.0 flow.
When you set use_local_webserver=False, pydata-google-auth will request
that you copy a token from the Sign in to BigQuery page.

	Sign in to BigQuery

Default credentials

Data library and tool authors can use the pydata_google_auth.default()
function to get Application Default Credentials [https://google-auth.readthedocs.io/en/latest/reference/google.auth.html#google.auth.default]
and fallback to user credentials when no valid Application Default
Credentials are found.

When wrapping the pydata_google_auth.default() method for use in your
tool or library, please provide your own client ID and client secret. Enable
the APIs your users will need in the project which owns the client ID and
secrets. Note that some APIs, such as Cloud Vision, bill the client
project. Verify that the API you are enabling bills the user’s project not
the client project.

 [image: pydata logo]

Sign in to BigQuery

You are seeing this page because you are attempting to access BigQuery via one
of several possible methods, including:

	the pydata-google-auth library

OR a pandas library helper function such as:

	pandas.DataFrame.to_gbq()

	pandas.read_gbq()

from this or another machine. If this is not the case, close this tab.

Enter the following verification code in the CommandLine Interface (CLI) on the
machine you want to log into. This is a credential similar to your password
and should not be shared with others.

Copy
Hint

You can close this tab when you’re done.

 Command-line Reference

Command-line Reference

Run the pydata_google_auth CLI with python -m pydata_google_auth.

usage: python -m pydata_google_auth [-h] {login,print-token} ...

Manage credentials for Google APIs.

optional arguments:
 -h, --help show this help message and exit

commands:
 {login,print-token}
 login Login to Google and save user credentials as a JSON
 file to use as Application Default Credentials.
 print-token Load a credentials JSON file and print an access token.

Saving user credentials with login

usage: python -m pydata_google_auth login [-h] [--scopes SCOPES]
 [--client_id CLIENT_ID]
 [--client_secret CLIENT_SECRET]
 [--use_local_webserver]
 destination

positional arguments:
 destination Path of where to save user credentials JSON file.

optional arguments:
 -h, --help show this help message and exit
 --scopes SCOPES Comma-separated list of scopes (permissions) to
 request from Google. See: https://developers.google.co
 m/identity/protocols/googlescopes for a list of
 available scopes. Default:
 https://www.googleapis.com/auth/cloud-platform
 --client_id CLIENT_ID
 (Optional, but recommended) Client ID. Use this in
 combination with the --client-secret argument to
 authenticate with an application other than the
 default (PyData Auth). This argument is required to
 use APIs the track billing and quotas via the
 application (such as Cloud Vision), rather than
 billing the user (such as BigQuery does).
 --client_secret CLIENT_SECRET
 (Optional, but recommended) Client secret. Use this in
 combination with the --client-id argument to
 authenticate with an application other than the
 default (PyData Auth). This argument is required to
 use APIs the track billing and quotas via the
 application (such as Cloud Vision), rather than
 billing the user (such as BigQuery does).
 --use_local_webserver
 Use a local webserver for the user authentication.
 This starts a webserver on localhost, which allows the
 browser to pass a token directly to the program.

Save credentials with Cloud Platform scope to ~/keys/google-credentials.json.

python -m pydata_google_auth login ~/keys/google-credentials.json

Loading user credentials with print-token

Print an access token associate with the credentials at
~/keys/google-credentials.json.

python -m pydata_google_auth print-token ~/keys/google-credentials.json

Use curl and the credentials.json user credentials file to download
the contents of gs://your-bucket/path/to/object.txt with the Google Cloud
Storage JSON REST API.

curl -X GET \
 -H "Authorization: Bearer $(python -m pydata_google_auth print-token credentials.json)" \
 "https://storage.googleapis.com/storage/v1/b/your-bucket/o/path%%2Fto%%2Fobject.txt?alt=media"

 API Reference

API Reference

	default(scopes[, client_id, client_secret, …])

	Get credentials and default project for accessing Google APIs.

	get_user_credentials(scopes[, client_id, …])

	Gets user account credentials.

	load_user_credentials(path)

	Gets user account credentials from JSON file at path.

	save_user_credentials(scopes, path[, …])

	Gets user account credentials and saves them to a JSON file at path.

	load_service_account_credentials(path[, scopes])

	Gets service account credentials from JSON file at path.

	cache.CredentialsCache()

	Shared base class for crentials classes.

	cache.READ_WRITE

	Write credentials to disk and read cached credentials from disk.

	cache.REAUTH

	Write credentials to disk.

	cache.NOOP

	Noop impmentation of credentials cache.

	exceptions.PyDataCredentialsError

	Raised when invalid credentials are provided, or tokens have expired.

	
pydata_google_auth.default(scopes, client_id=None, client_secret=None, credentials_cache=<pydata_google_auth.cache.ReadWriteCredentialsCache object>, use_local_webserver=True, auth_local_webserver=None, redirect_uri=None)

	Get credentials and default project for accessing Google APIs.

This method first attempts to get credentials via the
google.auth.default() [https://google-auth.readthedocs.io/en/latest/reference/google.auth.html#google.auth.default] function. If it is unable to get valid
credentials, it then attempts to get user account credentials via the
pydata_google_auth.get_user_credentials() function.

	Parameters

	
	scopes (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of scopes to use when authenticating to Google APIs. See the
list of OAuth 2.0 scopes for Google APIs [https://developers.google.com/identity/protocols/googlescopes].

	client_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The client secrets to use when prompting for user credentials.
Defaults to a client ID associated with pydata-google-auth.

If you are a tool or library author, you must override the default
value with a client ID associated with your project. Per the Google
APIs terms of service [https://developers.google.com/terms/], you
must not mask your API client’s identity when using Google APIs.

	client_secret (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The client secrets to use when prompting for user credentials.
Defaults to a client secret associated with pydata-google-auth.

If you are a tool or library author, you must override the default
value with a client secret associated with your project. Per the
Google APIs terms of service [https://developers.google.com/terms/], you must not mask your API
client’s identity when using Google APIs.

	credentials_cache (pydata_google_auth.cache.CredentialsCache, optional) – An object responsible for loading and saving user credentials.

By default, pydata-google-auth reads and writes credentials in
$HOME/.config/pydata/pydata_google_credentials.json or
$APPDATA/.config/pydata/pydata_google_credentials.json on
Windows.

	use_local_webserver (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Use a local webserver for the user authentication
google_auth_oauthlib.flow.InstalledAppFlow [https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow]. Binds a
webserver to an open port on localhost between 8080 and 8089,
inclusive, to receive authentication token. If not set, defaults to
False, which requests a token via the console.

	auth_local_webserver (deprecated) – Use the use_local_webserver parameter instead.

	redirect_uri (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Redirect URIs are endpoints to which the OAuth 2.0 server can send
responses. They may be used in situations such as

	an organization has an org specific authentication endpoint

	an organization can not use an endpoint directly because of
constraints on access to the internet (i.e. when running code on a
remotely hosted device).

	Returns

	credentials, project_id – credentials : OAuth 2.0 credentials for accessing Google APIs

project_id : A default Google developer project ID, if one could be determined
from the credentials. For example, this returns the project ID
associated with a service account when using a service account key
file. It returns None when using user-based credentials.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][google.auth.credentials.Credentials [https://google-auth.readthedocs.io/en/latest/reference/google.auth.credentials.html#google.auth.credentials.Credentials], str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]]

	Raises

	pydata_google_auth.exceptions.PyDataCredentialsError – If unable to get valid credentials.

	
pydata_google_auth.get_user_credentials(scopes, client_id=None, client_secret=None, credentials_cache=<pydata_google_auth.cache.ReadWriteCredentialsCache object>, use_local_webserver=True, auth_local_webserver=None, redirect_uri=None)

	Gets user account credentials.

This function authenticates using user credentials, either loading saved
credentials from the cache or by going through the OAuth 2.0 flow.

The default read-write cache attempts to read credentials from a file on
disk. If these credentials are not found or are invalid, it begins an
OAuth 2.0 flow to get credentials. You’ll open a browser window asking
for you to authenticate to your Google account using the product name
PyData Google Auth. The permissions it requests correspond to the
scopes you’ve provided.

Additional information on the user credentials authentication mechanism
can be found here [https://developers.google.com/identity/protocols/OAuth2#clientside/].

	Parameters

	
	scopes (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of scopes to use when authenticating to Google APIs. See the
list of OAuth 2.0 scopes for Google APIs [https://developers.google.com/identity/protocols/googlescopes].

	client_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The client secrets to use when prompting for user credentials.
Defaults to a client ID associated with pydata-google-auth.

If you are a tool or library author, you must override the default
value with a client ID associated with your project. Per the Google
APIs terms of service [https://developers.google.com/terms/], you
must not mask your API client’s identity when using Google APIs.

	client_secret (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The client secrets to use when prompting for user credentials.
Defaults to a client secret associated with pydata-google-auth.

If you are a tool or library author, you must override the default
value with a client secret associated with your project. Per the
Google APIs terms of service [https://developers.google.com/terms/], you must not mask your API
client’s identity when using Google APIs.

	credentials_cache (pydata_google_auth.cache.CredentialsCache, optional) – An object responsible for loading and saving user credentials.

By default, pydata-google-auth reads and writes credentials in
$HOME/.config/pydata/pydata_google_credentials.json or
$APPDATA/.config/pydata/pydata_google_credentials.json on
Windows.

	use_local_webserver (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Use a local webserver for the user authentication
google_auth_oauthlib.flow.InstalledAppFlow [https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow]. Binds a
webserver to an open port on localhost between 8080 and 8089,
inclusive, to receive authentication token. If not set, defaults to
False, which requests a token via the console.

	auth_local_webserver (deprecated) – Use the use_local_webserver parameter instead.

	redirect_uri (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Redirect URIs are endpoints to which the OAuth 2.0 server can send
responses. They may be used in situations such as

	an organization has an org specific authentication endpoint

	an organization can not use an endpoint directly because of
constraints on access to the internet (i.e. when running code on a
remotely hosted device).

	Returns

	credentials – Credentials for the user, with the requested scopes.

	Return type

	google.oauth2.credentials.Credentials [https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials]

	Raises

	pydata_google_auth.exceptions.PyDataCredentialsError – If unable to get valid user credentials.

	
pydata_google_auth.load_service_account_credentials(path, scopes=None)

	Gets service account credentials from JSON file at path.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to credentials JSON file.

	scopes (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – A list of scopes to use when authenticating to Google APIs. See the
list of OAuth 2.0 scopes for Google APIs [https://developers.google.com/identity/protocols/googlescopes].

	Returns

	

	Return type

	google.oauth2.service_account.Credentials [https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.service_account.html#google.oauth2.service_account.Credentials]

	Raises

	pydata_google_auth.exceptions.PyDataCredentialsError – If unable to load service credentials.

Examples

Load credentials and use them to construct a BigQuery client.

import pydata_google_auth
import google.cloud.bigquery

credentials = pydata_google_auth.load_service_account_credentials(
 "/home/username/keys/google-service-account-credentials.json",
)
client = google.cloud.bigquery.BigQueryClient(
 credentials=credentials,
 project=credentials.project_id
)

	
pydata_google_auth.load_user_credentials(path)

	Gets user account credentials from JSON file at path.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to credentials JSON file.

	Returns

	

	Return type

	google.auth.credentials.Credentials [https://google-auth.readthedocs.io/en/latest/reference/google.auth.credentials.html#google.auth.credentials.Credentials]

	Raises

	pydata_google_auth.exceptions.PyDataCredentialsError – If unable to load user credentials.

Examples

Load credentials and use them to construct a BigQuery client.

import pydata_google_auth
import google.cloud.bigquery

credentials = pydata_google_auth.load_user_credentials(
 "/home/username/keys/google-credentials.json",
)
client = google.cloud.bigquery.BigQueryClient(
 credentials=credentials,
 project="my-project-id"
)

	
pydata_google_auth.save_user_credentials(scopes, path, client_id=None, client_secret=None, use_local_webserver=True)

	Gets user account credentials and saves them to a JSON file at path.

This function authenticates using user credentials by going through the
OAuth 2.0 flow.

	Parameters

	
	scopes (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of scopes to use when authenticating to Google APIs. See the
list of OAuth 2.0 scopes for Google APIs [https://developers.google.com/identity/protocols/googlescopes].

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to save credentials JSON file.

	client_id (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The client secrets to use when prompting for user credentials.
Defaults to a client ID associated with pydata-google-auth.

If you are a tool or library author, you must override the default
value with a client ID associated with your project. Per the Google
APIs terms of service [https://developers.google.com/terms/], you
must not mask your API client’s identity when using Google APIs.

	client_secret (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The client secrets to use when prompting for user credentials.
Defaults to a client secret associated with pydata-google-auth.

If you are a tool or library author, you must override the default
value with a client secret associated with your project. Per the
Google APIs terms of service [https://developers.google.com/terms/], you must not mask your API
client’s identity when using Google APIs.

	use_local_webserver (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Use a local webserver for the user authentication
google_auth_oauthlib.flow.InstalledAppFlow [https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow]. Binds a
webserver to an open port on localhost between 8080 and 8089,
inclusive, to receive authentication token. If not set, defaults to
False, which requests a token via the console.

	Returns

	

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	Raises

	pydata_google_auth.exceptions.PyDataCredentialsError – If unable to get valid user credentials.

Examples

Get credentials for Google Cloud Platform and save them to
/home/username/keys/google-credentials.json.

pydata_google_auth.save_user_credentials(
 ["https://www.googleapis.com/auth/cloud-platform"],
 "/home/username/keys/google-credentials.json",
 use_local_webserver=True,
)

Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to use
these credentials with Google Application Default Credentials.

export GOOGLE_APPLICATION_CREDENTIALS='/home/username/keys/google-credentials.json'

Caching implementations for reading and writing user credentials.

	
class pydata_google_auth.cache.CredentialsCache

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Shared base class for crentials classes.

This class also functions as a noop implementation of a credentials class.

	
load()

	Load credentials from disk.

Does nothing in this base class.

	Returns

	Returns user account credentials loaded from disk or None if no
credentials could be found.

	Return type

	google.oauth2.credentials.Credentials [https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials], optional

	
save(credentials)

	Write credentials to disk.

Does nothing in this base class.

	Parameters

	credentials (google.oauth2.credentials.Credentials [https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials]) – User credentials to save to disk.

	
pydata_google_auth.cache.NOOP = <pydata_google_auth.cache.CredentialsCache object>

	Noop impmentation of credentials cache.

This cache always reauthorizes and never save credentials to disk.
Recommended for shared machines.

	
pydata_google_auth.cache.READ_WRITE = <pydata_google_auth.cache.ReadWriteCredentialsCache object>

	Write credentials to disk and read cached credentials from disk.

	
pydata_google_auth.cache.REAUTH = <pydata_google_auth.cache.WriteOnlyCredentialsCache object>

	Write credentials to disk. Never read cached credentials from disk.

Use this to reauthenticate and refresh the cached credentials.

	
class pydata_google_auth.cache.ReadWriteCredentialsCache(dirname='pydata', filename='pydata_google_credentials.json')

	Bases: pydata_google_auth.cache.CredentialsCache

A CredentialsCache which writes to
disk and reads cached credentials from disk.

	Parameters

	
	dirname (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of directory to write credentials to. This directory is created
within the .config subdirectory of the HOME (APPDATA on
Windows) directory.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the credentials file within the credentials directory.

	
load()

	Load credentials from disk.

	Returns

	Returns user account credentials loaded from disk or None if no
credentials could be found.

	Return type

	google.oauth2.credentials.Credentials [https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials], optional

	
save(credentials)

	Write credentials to disk.

	Parameters

	credentials (google.oauth2.credentials.Credentials [https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials]) – User credentials to save to disk.

	
class pydata_google_auth.cache.WriteOnlyCredentialsCache(dirname='pydata', filename='pydata_google_credentials.json')

	Bases: pydata_google_auth.cache.CredentialsCache

A CredentialsCache which writes to
disk, but doesn’t read from disk.

Use this class to reauthorize against Google APIs and cache your
credentials for later.

	Parameters

	
	dirname (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of directory to write credentials to. This directory is created
within the .config subdirectory of the HOME (APPDATA on
Windows) directory.

	filename (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the credentials file within the credentials directory.

	
save(credentials)

	Write credentials to disk.

	Parameters

	credentials (google.oauth2.credentials.Credentials [https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials]) – User credentials to save to disk.

	
exception pydata_google_auth.exceptions.PyDataConnectionError

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Raised when unable to fetch credentials due to connection error.

	
exception pydata_google_auth.exceptions.PyDataCredentialsError

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Raised when invalid credentials are provided, or tokens have expired.

 Contributing to pydata-google-auth

Contributing to pydata-google-auth

Table of contents:

	Where to start?

	Bug reports and enhancement requests

	Working with the code

	Version control, Git, and GitHub

	Getting started with Git

	Forking

	Creating a branch

	Install in Development Mode

	Conda

	Pip & virtualenv

	Contributing to the code base

	Code standards

	Python (PEP8)

	Backwards Compatibility

	Test-driven development/code writing

	Running the test suite

	Testing on multiple Python versions

	Documenting your code

	Contributing your changes to pydata-google-auth

	Committing your code

	Combining commits

	Pushing your changes

	Review your code

	Finally, make the pull request

	Delete your merged branch (optional)

Where to start?

All contributions, bug reports, bug fixes, documentation improvements,
enhancements and ideas are welcome.

If you are simply looking to start working with the pydata-google-auth codebase, navigate to the
GitHub “issues” tab [https://github.com/pydata/pydata-google-auth/issues] and start looking through
interesting issues.

Or maybe through using pydata-google-auth you have an idea of your own or are looking for something
in the documentation and thinking ‘this can be improved’…you can do something about it!

Feel free to ask questions on the mailing list [https://groups.google.com/forum/?fromgroups#!forum/pydata].

Bug reports and enhancement requests

Bug reports are an important part of making pydata-google-auth more stable. Having a complete bug report
will allow others to reproduce the bug and provide insight into fixing it. Because many versions of
pydata-google-auth are supported, knowing version information will also identify improvements made since
previous versions. Trying the bug-producing code out on the master branch is often a worthwhile exercise
to confirm the bug still exists. It is also worth searching existing bug reports and pull requests
to see if the issue has already been reported and/or fixed.

Bug reports must:

	Include a short, self-contained Python snippet reproducing the problem.
You can format the code nicely by using GitHub Flavored Markdown [http://github.github.com/github-flavored-markdown/]

>>> import pydata_google_auth
>>> creds, proj = pydata_google_auth.default(...)
...

	Include the full version string of pydata-google-auth.

>>> import pydata_google_auth
>>> pydata_google_auth.__version__
...

	Explain why the current behavior is wrong/not desired and what you expect instead.

The issue will then show up to the pydata-google-auth community and be open to comments/ideas from others.

Working with the code

Now that you have an issue you want to fix, enhancement to add, or documentation to improve,
you need to learn how to work with GitHub and the pydata-google-auth code base.

Version control, Git, and GitHub

To the new user, working with Git is one of the more daunting aspects of contributing to pydata-google-auth.
It can very quickly become overwhelming, but sticking to the guidelines below will help keep the process
straightforward and mostly trouble free. As always, if you are having difficulties please
feel free to ask for help.

The code is hosted on GitHub [https://www.github.com/pydata/pydata-google-auth]. To
contribute you will need to sign up for a free GitHub account [https://github.com/signup/free]. We use Git [http://git-scm.com/] for
version control to allow many people to work together on the project.

Some great resources for learning Git:

	the GitHub help pages [http://help.github.com/].

	the NumPy’s documentation [http://docs.scipy.org/doc/numpy/dev/index.html].

	Matthew Brett’s Pydagogue [http://matthew-brett.github.com/pydagogue/].

Getting started with Git

GitHub has instructions [http://help.github.com/set-up-git-redirect] for installing git,
setting up your SSH key, and configuring git. All these steps need to be completed before
you can work seamlessly between your local repository and GitHub.

Forking

You will need your own fork to work on the code. Go to the pydata-google-auth project
page [https://github.com/pydata/pydata-google-auth] and hit the Fork button. You will
want to clone your fork to your machine:

git clone git@github.com:your-user-name/pydata-google-auth.git pydata-google-auth-yourname
cd pydata-google-auth-yourname
git remote add upstream git://github.com/pydata/pydata-google-auth.git

This creates the directory pydata-google-auth-yourname and connects your repository to
the upstream (main project) pydata-google-auth repository.

The testing suite will run automatically on CircleCI once your pull request is submitted.
However, if you wish to run the test suite on a branch prior to submitting the pull request,
then CircleCI needs to be hooked up to your GitHub repository. Instructions for doing so
are here [https://circleci.com/docs/2.0/getting-started/]..

Creating a branch

You want your master branch to reflect only production-ready code, so create a
feature branch for making your changes. For example:

git branch shiny-new-feature
git checkout shiny-new-feature

The above can be simplified to:

git checkout -b shiny-new-feature

This changes your working directory to the shiny-new-feature branch. Keep any
changes in this branch specific to one bug or feature so it is clear
what the branch brings to pydata-google-auth. You can have many shiny-new-features
and switch in between them using the git checkout command.

To update this branch, you need to retrieve the changes from the master branch:

git fetch upstream
git rebase upstream/master

This will replay your commits on top of the latest pydata-google-auth git master. If this
leads to merge conflicts, you must resolve these before submitting your pull
request. If you have uncommitted changes, you will need to stash them prior
to updating. This will effectively store your changes and they can be reapplied
after updating.

Install in Development Mode

It’s helpful to install pydata-google-auth in development mode so that you can
use the library without reinstalling the package after every change.

Conda

Create a new conda environment and install the necessary dependencies

$ conda create -n my-env --channel conda-forge \
 google-auth-oauthlib \
 google-api-python-client \
 google-auth-httplib2
$ source activate my-env

Install pydata-google-auth in development mode

$ python setup.py develop

Pip & virtualenv

Skip this section if you already followed the conda instructions.

Create a new virtual
environment [https://virtualenv.pypa.io/en/stable/userguide/].

$ virtualenv env
$ source env/bin/activate

You can install pydata-google-auth and its dependencies in development mode via
pip [https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs].

$ pip install -e .

Contributing to the code base

Code Base:

	Code standards

	Python (PEP8)

	Backwards Compatibility

	Test-driven development/code writing

	Running the test suite

	Testing on multiple Python versions

	Documenting your code

Code standards

Writing good code is not just about what you write. It is also about how you
write it. During testing on CircleCI, several tools will be run to check your
code for stylistic errors. Generating any warnings will cause the test to fail.
Thus, good style is a requirement for submitting code to pydata-google-auth.

In addition, because a lot of people use our library, it is important that we
do not make sudden changes to the code that could have the potential to break
a lot of user code as a result, that is, we need it to be as backwards compatible
as possible to avoid mass breakages.

Python (PEP8)

pydata-google-auth uses the PEP8 [http://www.python.org/dev/peps/pep-0008/] standard.
There are several tools to ensure you abide by this standard. Here are some of
the more common PEP8 issues:

	we restrict line-length to 79 characters to promote readability

	passing arguments should have spaces after commas, e.g. foo(arg1, arg2, kw1='bar')

CircleCI will run the flake8 [http://pypi.python.org/pypi/flake8] tool and
the ‘black’ code formatting tool [https://black.readthedocs.io/] to report
any stylistic errors in your code. Therefore, it is helpful before submitting
code to run the check yourself on the diff:

black .
git diff master | flake8 --diff

Backwards Compatibility

Please try to maintain backward compatibility. If you think breakage is required,
clearly state why as part of the pull request. Also, be careful when changing method
signatures and add deprecation warnings where needed.

Test-driven development/code writing

pydata-google-auth is serious about testing and strongly encourages contributors to embrace
test-driven development (TDD) [http://en.wikipedia.org/wiki/Test-driven_development].
This development process “relies on the repetition of a very short development cycle:
first the developer writes an (initially failing) automated test case that defines a desired
improvement or new function, then produces the minimum amount of code to pass that test.”
So, before actually writing any code, you should write your tests. Often the test can be
taken from the original GitHub issue. However, it is always worth considering additional
use cases and writing corresponding tests.

Adding tests is one of the most common requests after code is pushed to pydata-google-auth. Therefore,
it is worth getting in the habit of writing tests ahead of time so this is never an issue.

Like many packages, pydata-google-auth uses pytest [http://doc.pytest.org/en/latest/].

Running the test suite

The tests can then be run directly inside your Git clone (without having to
install pydata-google-auth) by typing:

pytest tests/unit
pytest tests/system.py

The tests suite is exhaustive and takes around 20 minutes to run. Often it is
worth running only a subset of tests first around your changes before running the
entire suite.

The easiest way to do this is with:

pytest tests/path/to/test.py -k regex_matching_test_name

Or with one of the following constructs:

pytest tests/[test-module].py
pytest tests/[test-module].py::[TestClass]
pytest tests/[test-module].py::[TestClass]::[test_method]

For more, see the pytest [http://doc.pytest.org/en/latest/] documentation.

Testing on multiple Python versions

pydata-google-auth uses nox [https://nox.readthedocs.io] to automate testing in
multiple Python environments. First, install nox.

$ pip install --upgrade nox

To run tests in all versions of Python, run nox from the repository’s root
directory.

Documenting your code

Changes should be reflected in the release notes located in doc/source/changelog.rst.
This file contains an ongoing change log. Add an entry to this file to document your fix,
enhancement or (unavoidable) breaking change. Make sure to include the GitHub issue number
when adding your entry (using `` GH#1234 [https://github.com/pydata/pydata-google-auth/issues/1234] `` where 1234 is the issue/pull request number).

If your code is an enhancement, it is most likely necessary to add usage
examples to the existing documentation. Further, to let users know when
this feature was added, the versionadded directive is used. The sphinx
syntax for that is:

.. versionadded:: 0.1.3

This will put the text New in version 0.1.3 wherever you put the sphinx
directive. This should also be put in the docstring when adding a new function
or method.

Contributing your changes to pydata-google-auth

Committing your code

Keep style fixes to a separate commit to make your pull request more readable.

Once you’ve made changes, you can see them by typing:

git status

If you have created a new file, it is not being tracked by git. Add it by typing:

git add path/to/file-to-be-added.py

Doing ‘git status’ again should give something like:

On branch shiny-new-feature
#
modified: /relative/path/to/file-you-added.py
#

Finally, commit your changes to your local repository with an explanatory message. pydata-google-auth
uses a convention for commit message prefixes and layout. Here are
some common prefixes along with general guidelines for when to use them:

	ENH: Enhancement, new functionality

	BUG: Bug fix

	DOC: Additions/updates to documentation

	TST: Additions/updates to tests

	BLD: Updates to the build process/scripts

	PERF: Performance improvement

	CLN: Code cleanup

The following defines how a commit message should be structured. Please reference the
relevant GitHub issues in your commit message using GH1234 or #1234. Either style
is fine, but the former is generally preferred:

	a subject line with < 80 chars.

	One blank line.

	Optionally, a commit message body.

Now you can commit your changes in your local repository:

git commit -m

Combining commits

If you have multiple commits, you may want to combine them into one commit, often
referred to as “squashing” or “rebasing”. This is a common request by package maintainers
when submitting a pull request as it maintains a more compact commit history. To rebase
your commits:

git rebase -i HEAD~#

Where # is the number of commits you want to combine. Then you can pick the relevant
commit message and discard others.

To squash to the master branch do:

git rebase -i master

Use the s option on a commit to squash, meaning to keep the commit messages,
or f to fixup, meaning to merge the commit messages.

Then you will need to push the branch (see below) forcefully to replace the current
commits with the new ones:

git push origin shiny-new-feature -f

Pushing your changes

When you want your changes to appear publicly on your GitHub page, push your
forked feature branch’s commits:

git push origin shiny-new-feature

Here origin is the default name given to your remote repository on GitHub.
You can see the remote repositories:

git remote -v

If you added the upstream repository as described above you will see something
like:

origin git@github.com:yourname/pydata-google-auth.git (fetch)
origin git@github.com:yourname/pydata-google-auth.git (push)
upstream git://github.com/pydata/pydata-google-auth.git (fetch)
upstream git://github.com/pydata/pydata-google-auth.git (push)

Now your code is on GitHub, but it is not yet a part of the pydata-google-auth project. For that to
happen, a pull request needs to be submitted on GitHub.

Review your code

When you’re ready to ask for a code review, file a pull request. Before you do, once
again make sure that you have followed all the guidelines outlined in this document
regarding code style, tests, performance tests, and documentation. You should also
double check your branch changes against the branch it was based on:

	Navigate to your repository on GitHub – https://github.com/your-user-name/pydata-google-auth

	Click on Branches

	Click on the Compare button for your feature branch

	Select the base and compare branches, if necessary. This will be master and
shiny-new-feature, respectively.

Finally, make the pull request

If everything looks good, you are ready to make a pull request. A pull request is how
code from a local repository becomes available to the GitHub community and can be looked
at and eventually merged into the master version. This pull request and its associated
changes will eventually be committed to the master branch and available in the next
release. To submit a pull request:

	Navigate to your repository on GitHub

	Click on the Pull Request button

	You can then click on Commits and Files Changed to make sure everything looks
okay one last time

	Write a description of your changes in the Preview Discussion tab

	Click Send Pull Request.

This request then goes to the repository maintainers, and they will review
the code. If you need to make more changes, you can make them in
your branch, push them to GitHub, and the pull request will be automatically
updated. Pushing them to GitHub again is done by:

git push -f origin shiny-new-feature

This will automatically update your pull request with the latest code and restart the
CircleCI tests.

Delete your merged branch (optional)

Once your feature branch is accepted into upstream, you’ll probably want to get rid of
the branch. First, merge upstream master into your branch so git knows it is safe to
delete your branch:

git fetch upstream
git checkout master
git merge upstream/master

Then you can just do:

git branch -d shiny-new-feature

Make sure you use a lower-case -d, or else git won’t warn you if your feature
branch has not actually been merged.

The branch will still exist on GitHub, so to delete it there do:

git push origin --delete shiny-new-feature

 Changelog

Changelog

1.8.2 / (2023-08-01)

	Ensure that the user credentials flow always gets a refresh token.
(GH#72 [https://github.com/pydata/pydata-google-auth/issues/72])

1.8.1 / (2023-07-10)

	If any exception occurs during Google Colab authentication, fallback to
the Google Application Default Credentials flow. (GH#71 [https://github.com/pydata/pydata-google-auth/issues/71])

1.8.0 / (2023-05-09)

	When running on Google Colab, try Colab-based authentication
(google.colab.auth.authenticate_user()) before attempting the Google
Application Default Credentials flow. (GH#68 [https://github.com/pydata/pydata-google-auth/issues/68])

1.7.0 / (2023-02-07)

	Reissue of the library with the changes from 1.6.0 but with a new
version number due to a conflict in releases.

1.6.0 / (2023-02-07)

	Adds decision logic to handle use cases where a user may not have the
ability to log in via an Out of Band authentication flow. (GH#54 [https://github.com/pydata/pydata-google-auth/issues/54])

	Also provides an OAuth page as part of the documentation.

1.5.0 / (2023-01-09)

	Adds ability to provide redirect uri. (GH#58 [https://github.com/pydata/pydata-google-auth/issues/58])

1.4.0 / (2022-03-14)

	Default use_local_webserver to True. Google has deprecated the
use_local_webserver = False “out of band” (copy-paste) flow [https://developers.googleblog.com/2022/02/making-oauth-flows-safer.html?m=1#disallowed-oob].
The use_local_webserver = False option is planned to stop working in
October 2022.

1.3.0 / (2021-12-03)

	Adds support for Python 3.10. (GH#51 [https://github.com/pydata/pydata-google-auth/issues/51])

	Fixes typo in documentation. (GH#44 [https://github.com/pydata/pydata-google-auth/issues/44])

1.2.0 / (2021-04-21)

	Adds pydata_google_auth.load_service_account_credentials() function to
get service account credentials from the specified JSON path. (GH#39 [https://github.com/pydata/pydata-google-auth/issues/39])

1.1.0 / (2020-04-23)

	Try a range of ports between 8080 and 8090 when use_local_webserver is
True. (GH#35 [https://github.com/pydata/pydata-google-auth/issues/35])

1.0.0 / (2020-04-20)

	Mark package as 1.0, generally available.

	Update introduction with link to instructions on creating a Google Cloud
project. (GH#18 [https://github.com/pydata/pydata-google-auth/issues/18])

0.3.0 / (2020-02-04)

	Add python -m pydata_google_auth CLI for working with user credentials.
(GH#28 [https://github.com/pydata/pydata-google-auth/issues/28])

0.2.1 / (2019-12-12)

	Re-enable auth_local_webserver in default method. Show warning,
rather than fallback to console.

0.2.0 / (2019-12-12)

	Deprecate auth_local_webserver argument in favor of
use_local_webserver argument (GH#20 [https://github.com/pydata/pydata-google-auth/issues/20]).

New Features

	Adds pydata_google_auth.save_user_credentials() function to get user
credentials and then save them to a specified JSON path. (GH#22 [https://github.com/pydata/pydata-google-auth/issues/22])

Bug Fixes

	Update OAuth2 token endpoint to latest URI from Google. (GH#27 [https://github.com/pydata/pydata-google-auth/issues/27])

	Don’t raise error when the APPDATA environment variable isn’t set on
Windows. (GH#29 [https://github.com/pydata/pydata-google-auth/issues/29])

0.1.3 / (2019-02-26)

Bug Fixes

	Respect the dirname and filename arguments to the
ReadWriteCredentialsCache and
WriteOnlyCredentialsCache constructors.
(GH#16 [https://github.com/pydata/pydata-google-auth/issues/16], GH#17 [https://github.com/pydata/pydata-google-auth/issues/17])

0.1.2 / (2019-02-01)

Bug Fixes

	Don’t write to the filesystem at module import time. This fixes an issue
where the module could not be imported on systems where the file system is
unwriteable. (GH#10 [https://github.com/pydata/pydata-google-auth/issues/10], GH#11 [https://github.com/pydata/pydata-google-auth/issues/11])

0.1.1 / (2018-10-26)

	Add LICENSE.txt to package manifest.

	Document privacy policy.

0.1.0 / (2018-10-23)

	Add cache module for configuring caching behaviors. (GH#1 [https://github.com/pydata/pydata-google-auth/issues/1])

	Fork the pandas-gbq project [https://github.com/pydata/pandas-gbq] and
refactor out helpers for working with Google credentials.

 Privacy

Privacy

This package is a PyData project [https://pydata.org/] and is subject to
the NumFocus privacy policy [https://numfocus.org/privacy-policy]. Your
use of Google APIs with this module is subject to each API’s respective
terms of service [https://developers.google.com/terms/].

Google account and user data

Accessing user data

The pydata_google_auth module accesses your Google user account, with
the list of scopes [https://developers.google.com/identity/protocols/googlescopes] that you
specify. Depending on your specified list of scopes, the credentials returned
by this library may provide access to other user data, such as your email
address, Google Cloud Platform resources, Google Drive files, or Google
Sheets.

Storing user data

By default, your credentials are stored by the
pydata_google_auth.cache.READ_WRITE class to a local file, such as
~/.config/pydata. All user data is stored on your local machine. Use
caution when using this library on a shared machine.

Sharing user data

The pydata-google-auth library only communicates with Google APIs. No user
data is shared with PyData, NumFocus, or any other servers.

Policies for application authors

Do not use the default client ID when using the pydata-google-auth library
from an application, library, or tool. Per the Google User Data Policy [https://developers.google.com/terms/api-services-user-data-policy], your
application must accurately represent itself when authenticating to Google
API servcies.

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pydata_google_auth	

 	
 	
 pydata_google_auth.cache	

 	
 	
 pydata_google_auth.exceptions	

 Index

Index

 C
 | D
 | G
 | L
 | M
 | N
 | P
 | R
 | S
 | W

C

 	
 	CredentialsCache (class in pydata_google_auth.cache)

D

 	
 	default() (in module pydata_google_auth)

G

 	
 	get_user_credentials() (in module pydata_google_auth)

L

 	
 	load() (pydata_google_auth.cache.CredentialsCache method)

 	(pydata_google_auth.cache.ReadWriteCredentialsCache method)

 	
 	load_service_account_credentials() (in module pydata_google_auth)

 	load_user_credentials() (in module pydata_google_auth)

M

 	
 	
 module

 	pydata_google_auth

 	pydata_google_auth.cache

 	pydata_google_auth.exceptions

N

 	
 	NOOP (in module pydata_google_auth.cache)

P

 	
 	
 pydata_google_auth

 	module

 	
 pydata_google_auth.cache

 	module

 	
 	
 pydata_google_auth.exceptions

 	module

 	PyDataConnectionError

 	PyDataCredentialsError

R

 	
 	READ_WRITE (in module pydata_google_auth.cache)

 	
 	ReadWriteCredentialsCache (class in pydata_google_auth.cache)

 	REAUTH (in module pydata_google_auth.cache)

S

 	
 	save() (pydata_google_auth.cache.CredentialsCache method)

 	(pydata_google_auth.cache.ReadWriteCredentialsCache method)

 	(pydata_google_auth.cache.WriteOnlyCredentialsCache method)

 	
 	save_user_credentials() (in module pydata_google_auth)

W

 	
 	WriteOnlyCredentialsCache (class in pydata_google_auth.cache)

nav.xhtml

 Table of Contents

 		
 Welcome to pypdata-google-auth’s documentation!

 		
 Installation

 		
 Conda

 		
 Pip

 		
 Install from Source

 		
 Dependencies

 		
 Introduction

 		
 User credentials

 		
 Sign in to BigQuery

 		
 Default credentials

 		
 Command-line Reference

 		
 Saving user credentials with login

 		
 Loading user credentials with print-token

 		
 API Reference

 		
 Contributing to pydata-google-auth

 		
 Where to start?

 		
 Bug reports and enhancement requests

 		
 Working with the code

 		
 Version control, Git, and GitHub

 		
 Getting started with Git

 		
 Forking

 		
 Creating a branch

 		
 Install in Development Mode

 		
 Contributing to the code base

 		
 Code standards

 		
 Test-driven development/code writing

 		
 Documenting your code

 		
 Contributing your changes to pydata-google-auth

 		
 Committing your code

 		
 Combining commits

 		
 Pushing your changes

 		
 Review your code

 		
 Finally, make the pull request

 		
 Delete your merged branch (optional)

 		
 Changelog

 		
 1.8.2 / (2023-08-01)

 		
 1.8.1 / (2023-07-10)

 		
 1.8.0 / (2023-05-09)

 		
 1.7.0 / (2023-02-07)

 		
 1.6.0 / (2023-02-07)

 		
 1.5.0 / (2023-01-09)

 		
 1.4.0 / (2022-03-14)

 		
 1.3.0 / (2021-12-03)

 		
 1.2.0 / (2021-04-21)

 		
 1.1.0 / (2020-04-23)

 		
 1.0.0 / (2020-04-20)

 		
 0.3.0 / (2020-02-04)

 		
 0.2.1 / (2019-12-12)

 		
 0.2.0 / (2019-12-12)

 		
 New Features

 		
 Bug Fixes

 		
 0.1.3 / (2019-02-26)

 		
 Bug Fixes

 		
 0.1.2 / (2019-02-01)

 		
 Bug Fixes

 		
 0.1.1 / (2018-10-26)

 		
 0.1.0 / (2018-10-23)

 		
 Privacy

 		
 Google account and user data

