
pydata-google-auth Documentation
Release 0.1.0

PyData Development Team

Aug 01, 2023

CONTENTS

1 Installation 3
1.1 Conda . 3
1.2 Pip . 3
1.3 Install from Source . 3
1.4 Dependencies . 3

2 Introduction 5
2.1 User credentials . 5
2.2 Default credentials . 6

3 Command-line Reference 7
3.1 Saving user credentials with login . 7
3.2 Loading user credentials with print-token . 8

4 API Reference 9

5 Contributing to pydata-google-auth 17
5.1 Where to start? . 18
5.2 Bug reports and enhancement requests . 18
5.3 Working with the code . 18
5.4 Contributing to the code base . 20
5.5 Contributing your changes to pydata-google-auth . 23

6 Changelog 27
6.1 1.8.2 / (2023-08-01) . 27
6.2 1.8.1 / (2023-07-10) . 27
6.3 1.8.0 / (2023-05-09) . 27
6.4 1.7.0 / (2023-02-07) . 27
6.5 1.6.0 / (2023-02-07) . 27
6.6 1.5.0 / (2023-01-09) . 28
6.7 1.4.0 / (2022-03-14) . 28
6.8 1.3.0 / (2021-12-03) . 28
6.9 1.2.0 / (2021-04-21) . 28
6.10 1.1.0 / (2020-04-23) . 28
6.11 1.0.0 / (2020-04-20) . 28
6.12 0.3.0 / (2020-02-04) . 28
6.13 0.2.1 / (2019-12-12) . 29
6.14 0.2.0 / (2019-12-12) . 29
6.15 0.1.3 / (2019-02-26) . 29
6.16 0.1.2 / (2019-02-01) . 29
6.17 0.1.1 / (2018-10-26) . 29

i

6.18 0.1.0 / (2018-10-23) . 30

7 Privacy 31
7.1 Google account and user data . 31
7.2 Policies for application authors . 31

8 Indices and tables 33

Python Module Index 35

Index 37

ii

pydata-google-auth Documentation, Release 0.1.0

The pydata_google_auth module provides a wrapper to authenticate to Google APIs, such as Google BigQuery.

Contents:

CONTENTS 1

pydata-google-auth Documentation, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION

You can install pydata-google-auth with conda, pip, or by installing from source.

1.1 Conda

$ conda install pydata-google-auth --channel conda-forge

This installs pydata-google-auth and all common dependencies, including google-auth.

1.2 Pip

To install the latest version of pydata-google-auth: from the

$ pip install pydata-google-auth -U

This installs pydata-google-auth and all common dependencies, including google-auth.

1.3 Install from Source

$ pip install git+https://github.com/pydata/pydata-google-auth.git

1.4 Dependencies

This module requires following additional dependencies:

• google-auth: authentication and authorization for Google’s API

• google-auth-oauthlib: integration with oauthlib for end-user authentication

3

https://github.com/googleapis/google-auth-library-python
https://github.com/googleapis/google-auth-library-python-oauthlib
https://github.com/idan/oauthlib

pydata-google-auth Documentation, Release 0.1.0

4 Chapter 1. Installation

CHAPTER

TWO

INTRODUCTION

pydata-google-auth wraps the google-auth and google-auth-oauthlib libraries to make it easier to get and cache user
credentials for accessing the Google APIs from locally-installed data tools and libraries.

Warning: To use this module, you will need a Google account and developer project. Follow the Using the
BigQuery sandbox instructions to get started with big data on Google Cloud without a credit card.

See the Google Cloud Platform authentication guide for best practices on authentication in production server contexts.

2.1 User credentials

Use the pydata_google_auth.get_user_credentials() to get user credentials, authenticated to Google APIs.

By default, pydata-google-auth will listen for the credentials on a local webserver, which is used as the redirect page
from Google’s OAuth 2.0 flow. When you set use_local_webserver=False, pydata-google-auth will request that
you copy a token from the Sign in to BigQuery page.

2.1.1 Sign in to BigQuery

You are seeing this page because you are attempting to access BigQuery via one of several possible methods, including:

• the pydata-google-auth library

OR a pandas library helper function such as:

• pandas.DataFrame.to_gbq()

• pandas.read_gbq()

5

https://google-auth.readthedocs.io/
https://google-auth-oauthlib.readthedocs.io/
https://cloud.google.com/bigquery/docs/sandbox
https://cloud.google.com/bigquery/docs/sandbox
https://cloud.google.com/docs/authentication/

pydata-google-auth Documentation, Release 0.1.0

from this or another machine. If this is not the case, close this tab.

Enter the following verification code in the CommandLine Interface (CLI) on the machine you want to log into. This
is a credential similar to your password and should not be shared with others.

Hint: You can close this tab when you’re done.

2.2 Default credentials

Data library and tool authors can use the pydata_google_auth.default() function to get Application Default
Credentials and fallback to user credentials when no valid Application Default Credentials are found.

When wrapping the pydata_google_auth.default() method for use in your tool or library, please provide your
own client ID and client secret. Enable the APIs your users will need in the project which owns the client ID and
secrets. Note that some APIs, such as Cloud Vision, bill the client project. Verify that the API you are enabling bills
the user’s project not the client project.

6 Chapter 2. Introduction

https://google-auth.readthedocs.io/en/latest/reference/google.auth.html#google.auth.default
https://google-auth.readthedocs.io/en/latest/reference/google.auth.html#google.auth.default

CHAPTER

THREE

COMMAND-LINE REFERENCE

Run the pydata_google_auth CLI with python -m pydata_google_auth.

usage: python -m pydata_google_auth [-h] {login,print-token} ...

Manage credentials for Google APIs.

optional arguments:
-h, --help show this help message and exit

commands:
{login,print-token}
login Login to Google and save user credentials as a JSON

file to use as Application Default Credentials.
print-token Load a credentials JSON file and print an access token.

3.1 Saving user credentials with login

usage: python -m pydata_google_auth login [-h] [--scopes SCOPES]
[--client_id CLIENT_ID]
[--client_secret CLIENT_SECRET]
[--use_local_webserver]
destination

positional arguments:
destination Path of where to save user credentials JSON file.

optional arguments:
-h, --help show this help message and exit
--scopes SCOPES Comma-separated list of scopes (permissions) to

request from Google. See: https://developers.google.co
m/identity/protocols/googlescopes for a list of
available scopes. Default:
https://www.googleapis.com/auth/cloud-platform

--client_id CLIENT_ID
(Optional, but recommended) Client ID. Use this in
combination with the --client-secret argument to
authenticate with an application other than the
default (PyData Auth). This argument is required to

(continues on next page)

7

pydata-google-auth Documentation, Release 0.1.0

(continued from previous page)

use APIs the track billing and quotas via the
application (such as Cloud Vision), rather than
billing the user (such as BigQuery does).

--client_secret CLIENT_SECRET
(Optional, but recommended) Client secret. Use this in
combination with the --client-id argument to
authenticate with an application other than the
default (PyData Auth). This argument is required to
use APIs the track billing and quotas via the
application (such as Cloud Vision), rather than
billing the user (such as BigQuery does).

--use_local_webserver
Use a local webserver for the user authentication.
This starts a webserver on localhost, which allows the
browser to pass a token directly to the program.

Save credentials with Cloud Platform scope to ~/keys/google-credentials.json.

python -m pydata_google_auth login ~/keys/google-credentials.json

3.2 Loading user credentials with print-token

Print an access token associate with the credentials at ~/keys/google-credentials.json.

python -m pydata_google_auth print-token ~/keys/google-credentials.json

Use curl and the credentials.json user credentials file to download the contents of gs://your-bucket/path/
to/object.txt with the Google Cloud Storage JSON REST API.

curl -X GET \
-H "Authorization: Bearer $(python -m pydata_google_auth print-token credentials.

→˓json)" \
"https://storage.googleapis.com/storage/v1/b/your-bucket/o/path%%2Fto%%2Fobject.txt?

→˓alt=media"

8 Chapter 3. Command-line Reference

CHAPTER

FOUR

API REFERENCE

default(scopes[, client_id, client_secret, . . .]) Get credentials and default project for accessing Google
APIs.

get_user_credentials(scopes[, client_id, . . .]) Gets user account credentials.
load_user_credentials(path) Gets user account credentials from JSON file at path.
save_user_credentials(scopes, path[, . . .]) Gets user account credentials and saves them to a JSON

file at path.
load_service_account_credentials(path[,
scopes])

Gets service account credentials from JSON file at path.

cache.CredentialsCache() Shared base class for crentials classes.
cache.READ_WRITE Write credentials to disk and read cached credentials

from disk.
cache.REAUTH Write credentials to disk.
cache.NOOP Noop impmentation of credentials cache.
exceptions.PyDataCredentialsError Raised when invalid credentials are provided, or tokens

have expired.

pydata_google_auth.default(scopes, client_id=None, client_secret=None,
credentials_cache=<pydata_google_auth.cache.ReadWriteCredentialsCache
object>, use_local_webserver=True, auth_local_webserver=None,
redirect_uri=None)

Get credentials and default project for accessing Google APIs.

This method first attempts to get credentials via the google.auth.default() function. If it is unable
to get valid credentials, it then attempts to get user account credentials via the pydata_google_auth.
get_user_credentials() function.

Parameters

• scopes (list[str]) – A list of scopes to use when authenticating to Google APIs. See the
list of OAuth 2.0 scopes for Google APIs.

• client_id (str, optional) – The client secrets to use when prompting for user creden-
tials. Defaults to a client ID associated with pydata-google-auth.

If you are a tool or library author, you must override the default value with a client ID asso-
ciated with your project. Per the Google APIs terms of service, you must not mask your API
client’s identity when using Google APIs.

• client_secret (str, optional) – The client secrets to use when prompting for user
credentials. Defaults to a client secret associated with pydata-google-auth.

If you are a tool or library author, you must override the default value with a client secret
associated with your project. Per the Google APIs terms of service, you must not mask your

9

https://google-auth.readthedocs.io/en/latest/reference/google.auth.html#google.auth.default
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://developers.google.com/identity/protocols/googlescopes
https://docs.python.org/3/library/stdtypes.html#str
https://developers.google.com/terms/
https://docs.python.org/3/library/stdtypes.html#str
https://developers.google.com/terms/

pydata-google-auth Documentation, Release 0.1.0

API client’s identity when using Google APIs.

• credentials_cache (pydata_google_auth.cache.CredentialsCache,
optional) – An object responsible for loading and saving user credentials.

By default, pydata-google-auth reads and writes credentials in $HOME/.config/
pydata/pydata_google_credentials.json or $APPDATA/.config/pydata/
pydata_google_credentials.json on Windows.

• use_local_webserver (bool, optional) – Use a local webserver for the user authen-
tication google_auth_oauthlib.flow.InstalledAppFlow. Binds a webserver to an
open port on localhost between 8080 and 8089, inclusive, to receive authentication to-
ken. If not set, defaults to False, which requests a token via the console.

• auth_local_webserver (deprecated) – Use the use_local_webserver parameter in-
stead.

• redirect_uri (str, optional) – Redirect URIs are endpoints to which the OAuth 2.0
server can send responses. They may be used in situations such as

– an organization has an org specific authentication endpoint

– an organization can not use an endpoint directly because of constraints on access to the
internet (i.e. when running code on a remotely hosted device).

Returns

credentials, project_id – credentials : OAuth 2.0 credentials for accessing Google APIs

project_id : A default Google developer project ID, if one could be determined from the creden-
tials. For example, this returns the project ID associated with a service account when using a
service account key file. It returns None when using user-based credentials.

Return type tuple[google.auth.credentials.Credentials, str or None]

Raises pydata_google_auth.exceptions.PyDataCredentialsError – If unable to get valid
credentials.

pydata_google_auth.get_user_credentials(scopes, client_id=None, client_secret=None, creden-
tials_cache=<pydata_google_auth.cache.ReadWriteCredentialsCache
object>, use_local_webserver=True,
auth_local_webserver=None, redirect_uri=None)

Gets user account credentials.

This function authenticates using user credentials, either loading saved credentials from the cache or by going
through the OAuth 2.0 flow.

The default read-write cache attempts to read credentials from a file on disk. If these credentials are not found
or are invalid, it begins an OAuth 2.0 flow to get credentials. You’ll open a browser window asking for you to
authenticate to your Google account using the product name PyData Google Auth. The permissions it requests
correspond to the scopes you’ve provided.

Additional information on the user credentials authentication mechanism can be found here.

Parameters

• scopes (list[str]) – A list of scopes to use when authenticating to Google APIs. See the
list of OAuth 2.0 scopes for Google APIs.

• client_id (str, optional) – The client secrets to use when prompting for user creden-
tials. Defaults to a client ID associated with pydata-google-auth.

10 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://google-auth.readthedocs.io/en/latest/reference/google.auth.credentials.html#google.auth.credentials.Credentials
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://developers.google.com/identity/protocols/OAuth2#clientside/
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://developers.google.com/identity/protocols/googlescopes
https://docs.python.org/3/library/stdtypes.html#str

pydata-google-auth Documentation, Release 0.1.0

If you are a tool or library author, you must override the default value with a client ID asso-
ciated with your project. Per the Google APIs terms of service, you must not mask your API
client’s identity when using Google APIs.

• client_secret (str, optional) – The client secrets to use when prompting for user
credentials. Defaults to a client secret associated with pydata-google-auth.

If you are a tool or library author, you must override the default value with a client secret
associated with your project. Per the Google APIs terms of service, you must not mask your
API client’s identity when using Google APIs.

• credentials_cache (pydata_google_auth.cache.CredentialsCache,
optional) – An object responsible for loading and saving user credentials.

By default, pydata-google-auth reads and writes credentials in $HOME/.config/
pydata/pydata_google_credentials.json or $APPDATA/.config/pydata/
pydata_google_credentials.json on Windows.

• use_local_webserver (bool, optional) – Use a local webserver for the user authen-
tication google_auth_oauthlib.flow.InstalledAppFlow. Binds a webserver to an
open port on localhost between 8080 and 8089, inclusive, to receive authentication to-
ken. If not set, defaults to False, which requests a token via the console.

• auth_local_webserver (deprecated) – Use the use_local_webserver parameter in-
stead.

• redirect_uri (str, optional) – Redirect URIs are endpoints to which the OAuth 2.0
server can send responses. They may be used in situations such as

– an organization has an org specific authentication endpoint

– an organization can not use an endpoint directly because of constraints on access to the
internet (i.e. when running code on a remotely hosted device).

Returns credentials – Credentials for the user, with the requested scopes.

Return type google.oauth2.credentials.Credentials

Raises pydata_google_auth.exceptions.PyDataCredentialsError – If unable to get valid
user credentials.

pydata_google_auth.load_service_account_credentials(path, scopes=None)
Gets service account credentials from JSON file at path.

Parameters

• path (str) – Path to credentials JSON file.

• scopes (list[str], optional) – A list of scopes to use when authenticating to Google
APIs. See the list of OAuth 2.0 scopes for Google APIs.

Returns

Return type google.oauth2.service_account.Credentials

Raises pydata_google_auth.exceptions.PyDataCredentialsError – If unable to load ser-
vice credentials.

11

https://developers.google.com/terms/
https://docs.python.org/3/library/stdtypes.html#str
https://developers.google.com/terms/
https://docs.python.org/3/library/functions.html#bool
https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow
https://docs.python.org/3/library/stdtypes.html#str
https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://developers.google.com/identity/protocols/googlescopes
https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.service_account.html#google.oauth2.service_account.Credentials

pydata-google-auth Documentation, Release 0.1.0

Examples

Load credentials and use them to construct a BigQuery client.

import pydata_google_auth
import google.cloud.bigquery

credentials = pydata_google_auth.load_service_account_credentials(
"/home/username/keys/google-service-account-credentials.json",

)
client = google.cloud.bigquery.BigQueryClient(

credentials=credentials,
project=credentials.project_id

)

pydata_google_auth.load_user_credentials(path)
Gets user account credentials from JSON file at path.

Parameters path (str) – Path to credentials JSON file.

Returns

Return type google.auth.credentials.Credentials

Raises pydata_google_auth.exceptions.PyDataCredentialsError – If unable to load user
credentials.

Examples

Load credentials and use them to construct a BigQuery client.

import pydata_google_auth
import google.cloud.bigquery

credentials = pydata_google_auth.load_user_credentials(
"/home/username/keys/google-credentials.json",

)
client = google.cloud.bigquery.BigQueryClient(

credentials=credentials,
project="my-project-id"

)

pydata_google_auth.save_user_credentials(scopes, path, client_id=None, client_secret=None,
use_local_webserver=True)

Gets user account credentials and saves them to a JSON file at path.

This function authenticates using user credentials by going through the OAuth 2.0 flow.

Parameters

• scopes (list[str]) – A list of scopes to use when authenticating to Google APIs. See the
list of OAuth 2.0 scopes for Google APIs.

• path (str) – Path to save credentials JSON file.

• client_id (str, optional) – The client secrets to use when prompting for user creden-
tials. Defaults to a client ID associated with pydata-google-auth.

12 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://google-auth.readthedocs.io/en/latest/reference/google.auth.credentials.html#google.auth.credentials.Credentials
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://developers.google.com/identity/protocols/googlescopes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pydata-google-auth Documentation, Release 0.1.0

If you are a tool or library author, you must override the default value with a client ID asso-
ciated with your project. Per the Google APIs terms of service, you must not mask your API
client’s identity when using Google APIs.

• client_secret (str, optional) – The client secrets to use when prompting for user
credentials. Defaults to a client secret associated with pydata-google-auth.

If you are a tool or library author, you must override the default value with a client secret
associated with your project. Per the Google APIs terms of service, you must not mask your
API client’s identity when using Google APIs.

• use_local_webserver (bool, optional) – Use a local webserver for the user authen-
tication google_auth_oauthlib.flow.InstalledAppFlow. Binds a webserver to an
open port on localhost between 8080 and 8089, inclusive, to receive authentication to-
ken. If not set, defaults to False, which requests a token via the console.

Returns

Return type None

Raises pydata_google_auth.exceptions.PyDataCredentialsError – If unable to get valid
user credentials.

Examples

Get credentials for Google Cloud Platform and save them to /home/username/keys/google-credentials.
json.

pydata_google_auth.save_user_credentials(
["https://www.googleapis.com/auth/cloud-platform"],
"/home/username/keys/google-credentials.json",
use_local_webserver=True,

)

Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to use these credentials with Google Ap-
plication Default Credentials.

export GOOGLE_APPLICATION_CREDENTIALS='/home/username/keys/google-credentials.json'

Caching implementations for reading and writing user credentials.

class pydata_google_auth.cache.CredentialsCache
Bases: object

Shared base class for crentials classes.

This class also functions as a noop implementation of a credentials class.

load()
Load credentials from disk.

Does nothing in this base class.

Returns Returns user account credentials loaded from disk or None if no credentials could be
found.

Return type google.oauth2.credentials.Credentials, optional

save(credentials)
Write credentials to disk.

13

https://developers.google.com/terms/
https://docs.python.org/3/library/stdtypes.html#str
https://developers.google.com/terms/
https://docs.python.org/3/library/functions.html#bool
https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials

pydata-google-auth Documentation, Release 0.1.0

Does nothing in this base class.

Parameters credentials (google.oauth2.credentials.Credentials) – User creden-
tials to save to disk.

pydata_google_auth.cache.NOOP = <pydata_google_auth.cache.CredentialsCache object>
Noop impmentation of credentials cache.

This cache always reauthorizes and never save credentials to disk. Recommended for shared machines.

pydata_google_auth.cache.READ_WRITE = <pydata_google_auth.cache.ReadWriteCredentialsCache
object>

Write credentials to disk and read cached credentials from disk.

pydata_google_auth.cache.REAUTH = <pydata_google_auth.cache.WriteOnlyCredentialsCache
object>

Write credentials to disk. Never read cached credentials from disk.

Use this to reauthenticate and refresh the cached credentials.

class pydata_google_auth.cache.ReadWriteCredentialsCache(dirname='pydata', file-
name='pydata_google_credentials.json')

Bases: pydata_google_auth.cache.CredentialsCache

A CredentialsCache which writes to disk and reads cached credentials from disk.

Parameters

• dirname (str, optional) – Name of directory to write credentials to. This directory is
created within the .config subdirectory of the HOME (APPDATA on Windows) directory.

• filename (str, optional) – Name of the credentials file within the credentials directory.

load()
Load credentials from disk.

Returns Returns user account credentials loaded from disk or None if no credentials could be
found.

Return type google.oauth2.credentials.Credentials, optional

save(credentials)
Write credentials to disk.

Parameters credentials (google.oauth2.credentials.Credentials) – User creden-
tials to save to disk.

class pydata_google_auth.cache.WriteOnlyCredentialsCache(dirname='pydata', file-
name='pydata_google_credentials.json')

Bases: pydata_google_auth.cache.CredentialsCache

A CredentialsCache which writes to disk, but doesn’t read from disk.

Use this class to reauthorize against Google APIs and cache your credentials for later.

Parameters

• dirname (str, optional) – Name of directory to write credentials to. This directory is
created within the .config subdirectory of the HOME (APPDATA on Windows) directory.

• filename (str, optional) – Name of the credentials file within the credentials directory.

save(credentials)
Write credentials to disk.

14 Chapter 4. API Reference

https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials
https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pydata-google-auth Documentation, Release 0.1.0

Parameters credentials (google.oauth2.credentials.Credentials) – User creden-
tials to save to disk.

exception pydata_google_auth.exceptions.PyDataConnectionError
Bases: RuntimeError

Raised when unable to fetch credentials due to connection error.

exception pydata_google_auth.exceptions.PyDataCredentialsError
Bases: ValueError

Raised when invalid credentials are provided, or tokens have expired.

15

https://google-auth.readthedocs.io/en/latest/reference/google.oauth2.credentials.html#google.oauth2.credentials.Credentials
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError

pydata-google-auth Documentation, Release 0.1.0

16 Chapter 4. API Reference

CHAPTER

FIVE

CONTRIBUTING TO PYDATA-GOOGLE-AUTH

Table of contents:

• Where to start?

• Bug reports and enhancement requests

• Working with the code

– Version control, Git, and GitHub

– Getting started with Git

– Forking

– Creating a branch

– Install in Development Mode

∗ Conda

∗ Pip & virtualenv

• Contributing to the code base

– Code standards

∗ Python (PEP8)

∗ Backwards Compatibility

– Test-driven development/code writing

∗ Running the test suite

∗ Testing on multiple Python versions

– Documenting your code

• Contributing your changes to pydata-google-auth

– Committing your code

– Combining commits

– Pushing your changes

– Review your code

– Finally, make the pull request

– Delete your merged branch (optional)

17

pydata-google-auth Documentation, Release 0.1.0

5.1 Where to start?

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.

If you are simply looking to start working with the pydata-google-auth codebase, navigate to the GitHub “issues” tab
and start looking through interesting issues.

Or maybe through using pydata-google-auth you have an idea of your own or are looking for something in the docu-
mentation and thinking ‘this can be improved’. . . you can do something about it!

Feel free to ask questions on the mailing list.

5.2 Bug reports and enhancement requests

Bug reports are an important part of making pydata-google-auth more stable. Having a complete bug report will
allow others to reproduce the bug and provide insight into fixing it. Because many versions of pydata-google-auth
are supported, knowing version information will also identify improvements made since previous versions. Trying the
bug-producing code out on the master branch is often a worthwhile exercise to confirm the bug still exists. It is also
worth searching existing bug reports and pull requests to see if the issue has already been reported and/or fixed.

Bug reports must:

1. Include a short, self-contained Python snippet reproducing the problem. You can format the code nicely by using
GitHub Flavored Markdown

>>> import pydata_google_auth
>>> creds, proj = pydata_google_auth.default(...)
...

2. Include the full version string of pydata-google-auth.

>>> import pydata_google_auth
>>> pydata_google_auth.__version__
...

3. Explain why the current behavior is wrong/not desired and what you expect instead.

The issue will then show up to the pydata-google-auth community and be open to comments/ideas from others.

5.3 Working with the code

Now that you have an issue you want to fix, enhancement to add, or documentation to improve, you need to learn how
to work with GitHub and the pydata-google-auth code base.

18 Chapter 5. Contributing to pydata-google-auth

https://github.com/pydata/pydata-google-auth/issues
https://groups.google.com/forum/?fromgroups#!forum/pydata
http://github.github.com/github-flavored-markdown/

pydata-google-auth Documentation, Release 0.1.0

5.3.1 Version control, Git, and GitHub

To the new user, working with Git is one of the more daunting aspects of contributing to pydata-google-auth. It can
very quickly become overwhelming, but sticking to the guidelines below will help keep the process straightforward and
mostly trouble free. As always, if you are having difficulties please feel free to ask for help.

The code is hosted on GitHub. To contribute you will need to sign up for a free GitHub account. We use Git for version
control to allow many people to work together on the project.

Some great resources for learning Git:

• the GitHub help pages.

• the NumPy’s documentation.

• Matthew Brett’s Pydagogue.

5.3.2 Getting started with Git

GitHub has instructions for installing git, setting up your SSH key, and configuring git. All these steps need to be
completed before you can work seamlessly between your local repository and GitHub.

5.3.3 Forking

You will need your own fork to work on the code. Go to the pydata-google-auth project page and hit the Fork button.
You will want to clone your fork to your machine:

git clone git@github.com:your-user-name/pydata-google-auth.git pydata-google-auth-
→˓yourname
cd pydata-google-auth-yourname
git remote add upstream git://github.com/pydata/pydata-google-auth.git

This creates the directory pydata-google-auth-yourname and connects your repository to the upstream (main project)
pydata-google-auth repository.

The testing suite will run automatically on CircleCI once your pull request is submitted. However, if you wish to run
the test suite on a branch prior to submitting the pull request, then CircleCI needs to be hooked up to your GitHub
repository. Instructions for doing so are here..

5.3.4 Creating a branch

You want your master branch to reflect only production-ready code, so create a feature branch for making your changes.
For example:

git branch shiny-new-feature
git checkout shiny-new-feature

The above can be simplified to:

git checkout -b shiny-new-feature

This changes your working directory to the shiny-new-feature branch. Keep any changes in this branch specific to one
bug or feature so it is clear what the branch brings to pydata-google-auth. You can have many shiny-new-features and
switch in between them using the git checkout command.

To update this branch, you need to retrieve the changes from the master branch:

5.3. Working with the code 19

https://www.github.com/pydata/pydata-google-auth
https://github.com/signup/free
http://git-scm.com/
http://help.github.com/
http://docs.scipy.org/doc/numpy/dev/index.html
http://matthew-brett.github.com/pydagogue/
http://help.github.com/set-up-git-redirect
https://github.com/pydata/pydata-google-auth
https://circleci.com/docs/2.0/getting-started/

pydata-google-auth Documentation, Release 0.1.0

git fetch upstream
git rebase upstream/master

This will replay your commits on top of the latest pydata-google-auth git master. If this leads to merge conflicts, you
must resolve these before submitting your pull request. If you have uncommitted changes, you will need to stash them
prior to updating. This will effectively store your changes and they can be reapplied after updating.

5.3.5 Install in Development Mode

It’s helpful to install pydata-google-auth in development mode so that you can use the library without reinstalling the
package after every change.

Conda

Create a new conda environment and install the necessary dependencies

$ conda create -n my-env --channel conda-forge \
google-auth-oauthlib \
google-api-python-client \
google-auth-httplib2

$ source activate my-env

Install pydata-google-auth in development mode

$ python setup.py develop

Pip & virtualenv

Skip this section if you already followed the conda instructions.

Create a new virtual environment.

$ virtualenv env
$ source env/bin/activate

You can install pydata-google-auth and its dependencies in development mode via pip.

$ pip install -e .

5.4 Contributing to the code base

Code Base:

• Code standards

– Python (PEP8)

– Backwards Compatibility

• Test-driven development/code writing

20 Chapter 5. Contributing to pydata-google-auth

https://virtualenv.pypa.io/en/stable/userguide/
https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs

pydata-google-auth Documentation, Release 0.1.0

– Running the test suite

– Testing on multiple Python versions

• Documenting your code

5.4.1 Code standards

Writing good code is not just about what you write. It is also about how you write it. During testing on CircleCI, several
tools will be run to check your code for stylistic errors. Generating any warnings will cause the test to fail. Thus, good
style is a requirement for submitting code to pydata-google-auth.

In addition, because a lot of people use our library, it is important that we do not make sudden changes to the code
that could have the potential to break a lot of user code as a result, that is, we need it to be as backwards compatible as
possible to avoid mass breakages.

Python (PEP8)

pydata-google-auth uses the PEP8 standard. There are several tools to ensure you abide by this standard. Here are
some of the more common PEP8 issues:

• we restrict line-length to 79 characters to promote readability

• passing arguments should have spaces after commas, e.g. foo(arg1, arg2, kw1='bar')

CircleCI will run the flake8 tool and the ‘black’ code formatting tool to report any stylistic errors in your code. There-
fore, it is helpful before submitting code to run the check yourself on the diff:

black .
git diff master | flake8 --diff

Backwards Compatibility

Please try to maintain backward compatibility. If you think breakage is required, clearly state why as part of the pull
request. Also, be careful when changing method signatures and add deprecation warnings where needed.

5.4.2 Test-driven development/code writing

pydata-google-auth is serious about testing and strongly encourages contributors to embrace test-driven development
(TDD). This development process “relies on the repetition of a very short development cycle: first the developer writes
an (initially failing) automated test case that defines a desired improvement or new function, then produces the minimum
amount of code to pass that test.” So, before actually writing any code, you should write your tests. Often the test can
be taken from the original GitHub issue. However, it is always worth considering additional use cases and writing
corresponding tests.

Adding tests is one of the most common requests after code is pushed to pydata-google-auth. Therefore, it is worth
getting in the habit of writing tests ahead of time so this is never an issue.

Like many packages, pydata-google-auth uses pytest.

5.4. Contributing to the code base 21

http://www.python.org/dev/peps/pep-0008/
http://pypi.python.org/pypi/flake8
https://black.readthedocs.io/
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://doc.pytest.org/en/latest/

pydata-google-auth Documentation, Release 0.1.0

Running the test suite

The tests can then be run directly inside your Git clone (without having to install pydata-google-auth) by typing:

pytest tests/unit
pytest tests/system.py

The tests suite is exhaustive and takes around 20 minutes to run. Often it is worth running only a subset of tests first
around your changes before running the entire suite.

The easiest way to do this is with:

pytest tests/path/to/test.py -k regex_matching_test_name

Or with one of the following constructs:

pytest tests/[test-module].py
pytest tests/[test-module].py::[TestClass]
pytest tests/[test-module].py::[TestClass]::[test_method]

For more, see the pytest documentation.

Testing on multiple Python versions

pydata-google-auth uses nox to automate testing in multiple Python environments. First, install nox.

$ pip install --upgrade nox

To run tests in all versions of Python, run nox from the repository’s root directory.

5.4.3 Documenting your code

Changes should be reflected in the release notes located in doc/source/changelog.rst. This file contains an ongo-
ing change log. Add an entry to this file to document your fix, enhancement or (unavoidable) breaking change. Make
sure to include the GitHub issue number when adding your entry (using `` GH#1234 `` where 1234 is the issue/pull
request number).

If your code is an enhancement, it is most likely necessary to add usage examples to the existing documentation. Further,
to let users know when this feature was added, the versionadded directive is used. The sphinx syntax for that is:

.. versionadded:: 0.1.3

This will put the text New in version 0.1.3 wherever you put the sphinx directive. This should also be put in the docstring
when adding a new function or method.

22 Chapter 5. Contributing to pydata-google-auth

http://doc.pytest.org/en/latest/
https://nox.readthedocs.io
https://github.com/pydata/pydata-google-auth/issues/1234

pydata-google-auth Documentation, Release 0.1.0

5.5 Contributing your changes to pydata-google-auth

5.5.1 Committing your code

Keep style fixes to a separate commit to make your pull request more readable.

Once you’ve made changes, you can see them by typing:

git status

If you have created a new file, it is not being tracked by git. Add it by typing:

git add path/to/file-to-be-added.py

Doing ‘git status’ again should give something like:

On branch shiny-new-feature
#
modified: /relative/path/to/file-you-added.py
#

Finally, commit your changes to your local repository with an explanatory message. pydata-google-auth uses a con-
vention for commit message prefixes and layout. Here are some common prefixes along with general guidelines for
when to use them:

• ENH: Enhancement, new functionality

• BUG: Bug fix

• DOC: Additions/updates to documentation

• TST: Additions/updates to tests

• BLD: Updates to the build process/scripts

• PERF: Performance improvement

• CLN: Code cleanup

The following defines how a commit message should be structured. Please reference the relevant GitHub issues in your
commit message using GH1234 or #1234. Either style is fine, but the former is generally preferred:

• a subject line with < 80 chars.

• One blank line.

• Optionally, a commit message body.

Now you can commit your changes in your local repository:

git commit -m

5.5. Contributing your changes to pydata-google-auth 23

pydata-google-auth Documentation, Release 0.1.0

5.5.2 Combining commits

If you have multiple commits, you may want to combine them into one commit, often referred to as “squashing” or
“rebasing”. This is a common request by package maintainers when submitting a pull request as it maintains a more
compact commit history. To rebase your commits:

git rebase -i HEAD~#

Where # is the number of commits you want to combine. Then you can pick the relevant commit message and discard
others.

To squash to the master branch do:

git rebase -i master

Use the s option on a commit to squash, meaning to keep the commit messages, or f to fixup, meaning to merge the
commit messages.

Then you will need to push the branch (see below) forcefully to replace the current commits with the new ones:

git push origin shiny-new-feature -f

5.5.3 Pushing your changes

When you want your changes to appear publicly on your GitHub page, push your forked feature branch’s commits:

git push origin shiny-new-feature

Here origin is the default name given to your remote repository on GitHub. You can see the remote repositories:

git remote -v

If you added the upstream repository as described above you will see something like:

origin git@github.com:yourname/pydata-google-auth.git (fetch)
origin git@github.com:yourname/pydata-google-auth.git (push)
upstream git://github.com/pydata/pydata-google-auth.git (fetch)
upstream git://github.com/pydata/pydata-google-auth.git (push)

Now your code is on GitHub, but it is not yet a part of the pydata-google-auth project. For that to happen, a pull request
needs to be submitted on GitHub.

5.5.4 Review your code

When you’re ready to ask for a code review, file a pull request. Before you do, once again make sure that you have
followed all the guidelines outlined in this document regarding code style, tests, performance tests, and documentation.
You should also double check your branch changes against the branch it was based on:

1. Navigate to your repository on GitHub – https://github.com/your-user-name/pydata-google-auth

2. Click on Branches

3. Click on the Compare button for your feature branch

4. Select the base and compare branches, if necessary. This will be master and shiny-new-feature, respec-
tively.

24 Chapter 5. Contributing to pydata-google-auth

https://github.com/your-user-name/pydata-google-auth

pydata-google-auth Documentation, Release 0.1.0

5.5.5 Finally, make the pull request

If everything looks good, you are ready to make a pull request. A pull request is how code from a local repository
becomes available to the GitHub community and can be looked at and eventually merged into the master version. This
pull request and its associated changes will eventually be committed to the master branch and available in the next
release. To submit a pull request:

1. Navigate to your repository on GitHub

2. Click on the Pull Request button

3. You can then click on Commits and Files Changed to make sure everything looks okay one last time

4. Write a description of your changes in the Preview Discussion tab

5. Click Send Pull Request.

This request then goes to the repository maintainers, and they will review the code. If you need to make more changes,
you can make them in your branch, push them to GitHub, and the pull request will be automatically updated. Pushing
them to GitHub again is done by:

git push -f origin shiny-new-feature

This will automatically update your pull request with the latest code and restart the CircleCI tests.

5.5.6 Delete your merged branch (optional)

Once your feature branch is accepted into upstream, you’ll probably want to get rid of the branch. First, merge upstream
master into your branch so git knows it is safe to delete your branch:

git fetch upstream
git checkout master
git merge upstream/master

Then you can just do:

git branch -d shiny-new-feature

Make sure you use a lower-case -d, or else git won’t warn you if your feature branch has not actually been merged.

The branch will still exist on GitHub, so to delete it there do:

git push origin --delete shiny-new-feature

5.5. Contributing your changes to pydata-google-auth 25

pydata-google-auth Documentation, Release 0.1.0

26 Chapter 5. Contributing to pydata-google-auth

CHAPTER

SIX

CHANGELOG

6.1 1.8.2 / (2023-08-01)

• Ensure that the user credentials flow always gets a refresh token. (GH#72)

6.2 1.8.1 / (2023-07-10)

• If any exception occurs during Google Colab authentication, fallback to the Google Application Default Creden-
tials flow. (GH#71)

6.3 1.8.0 / (2023-05-09)

• When running on Google Colab, try Colab-based authentication (google.colab.auth.
authenticate_user()) before attempting the Google Application Default Credentials flow. (GH#68)

6.4 1.7.0 / (2023-02-07)

• Reissue of the library with the changes from 1.6.0 but with a new version number due to a conflict in releases.

6.5 1.6.0 / (2023-02-07)

• Adds decision logic to handle use cases where a user may not have the ability to log in via an Out of Band
authentication flow. (GH#54)

• Also provides an OAuth page as part of the documentation.

27

https://github.com/pydata/pydata-google-auth/issues/72
https://github.com/pydata/pydata-google-auth/issues/71
https://github.com/pydata/pydata-google-auth/issues/68
https://github.com/pydata/pydata-google-auth/issues/54

pydata-google-auth Documentation, Release 0.1.0

6.6 1.5.0 / (2023-01-09)

• Adds ability to provide redirect uri. (GH#58)

6.7 1.4.0 / (2022-03-14)

• Default use_local_webserver to True. Google has deprecated the use_local_webserver = False “out
of band” (copy-paste) flow. The use_local_webserver = False option is planned to stop working in October
2022.

6.8 1.3.0 / (2021-12-03)

• Adds support for Python 3.10. (GH#51)

• Fixes typo in documentation. (GH#44)

6.9 1.2.0 / (2021-04-21)

• Adds pydata_google_auth.load_service_account_credentials() function to get service account cre-
dentials from the specified JSON path. (GH#39)

6.10 1.1.0 / (2020-04-23)

• Try a range of ports between 8080 and 8090 when use_local_webserver is True. (GH#35)

6.11 1.0.0 / (2020-04-20)

• Mark package as 1.0, generally available.

• Update introduction with link to instructions on creating a Google Cloud project. (GH#18)

6.12 0.3.0 / (2020-02-04)

• Add python -m pydata_google_auth CLI for working with user credentials. (GH#28)

28 Chapter 6. Changelog

https://github.com/pydata/pydata-google-auth/issues/58
https://developers.googleblog.com/2022/02/making-oauth-flows-safer.html?m=1#disallowed-oob
https://developers.googleblog.com/2022/02/making-oauth-flows-safer.html?m=1#disallowed-oob
https://github.com/pydata/pydata-google-auth/issues/51
https://github.com/pydata/pydata-google-auth/issues/44
https://github.com/pydata/pydata-google-auth/issues/39
https://github.com/pydata/pydata-google-auth/issues/35
https://github.com/pydata/pydata-google-auth/issues/18
https://github.com/pydata/pydata-google-auth/issues/28

pydata-google-auth Documentation, Release 0.1.0

6.13 0.2.1 / (2019-12-12)

• Re-enable auth_local_webserver in default method. Show warning, rather than fallback to console.

6.14 0.2.0 / (2019-12-12)

• Deprecate auth_local_webserver argument in favor of use_local_webserver argument (GH#20).

6.14.1 New Features

• Adds pydata_google_auth.save_user_credentials() function to get user credentials and then save them
to a specified JSON path. (GH#22)

6.14.2 Bug Fixes

• Update OAuth2 token endpoint to latest URI from Google. (GH#27)

• Don’t raise error when the APPDATA environment variable isn’t set on Windows. (GH#29)

6.15 0.1.3 / (2019-02-26)

6.15.1 Bug Fixes

• Respect the dirname and filename arguments to the ReadWriteCredentialsCache and
WriteOnlyCredentialsCache constructors. (GH#16, GH#17)

6.16 0.1.2 / (2019-02-01)

6.16.1 Bug Fixes

• Don’t write to the filesystem at module import time. This fixes an issue where the module could not be imported
on systems where the file system is unwriteable. (GH#10, GH#11)

6.17 0.1.1 / (2018-10-26)

• Add LICENSE.txt to package manifest.

• Document privacy policy.

6.13. 0.2.1 / (2019-12-12) 29

https://github.com/pydata/pydata-google-auth/issues/20
https://github.com/pydata/pydata-google-auth/issues/22
https://github.com/pydata/pydata-google-auth/issues/27
https://github.com/pydata/pydata-google-auth/issues/29
https://github.com/pydata/pydata-google-auth/issues/16
https://github.com/pydata/pydata-google-auth/issues/17
https://github.com/pydata/pydata-google-auth/issues/10
https://github.com/pydata/pydata-google-auth/issues/11

pydata-google-auth Documentation, Release 0.1.0

6.18 0.1.0 / (2018-10-23)

• Add cache module for configuring caching behaviors. (GH#1)

• Fork the pandas-gbq project and refactor out helpers for working with Google credentials.

30 Chapter 6. Changelog

https://github.com/pydata/pydata-google-auth/issues/1
https://github.com/pydata/pandas-gbq

CHAPTER

SEVEN

PRIVACY

This package is a PyData project and is subject to the NumFocus privacy policy. Your use of Google APIs with this
module is subject to each API’s respective terms of service.

7.1 Google account and user data

7.1.1 Accessing user data

The pydata_google_auth module accesses your Google user account, with the list of scopes that you specify. De-
pending on your specified list of scopes, the credentials returned by this library may provide access to other user data,
such as your email address, Google Cloud Platform resources, Google Drive files, or Google Sheets.

7.1.2 Storing user data

By default, your credentials are stored by the pydata_google_auth.cache.READ_WRITE class to a local file, such
as ~/.config/pydata. All user data is stored on your local machine. Use caution when using this library on a
shared machine.

7.1.3 Sharing user data

The pydata-google-auth library only communicates with Google APIs. No user data is shared with PyData, NumFocus,
or any other servers.

7.2 Policies for application authors

Do not use the default client ID when using the pydata-google-auth library from an application, library, or tool. Per the
Google User Data Policy, your application must accurately represent itself when authenticating to Google API servcies.

31

https://pydata.org/
https://numfocus.org/privacy-policy
https://developers.google.com/terms/
https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/terms/api-services-user-data-policy

pydata-google-auth Documentation, Release 0.1.0

32 Chapter 7. Privacy

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

33

pydata-google-auth Documentation, Release 0.1.0

34 Chapter 8. Indices and tables

PYTHON MODULE INDEX

p
pydata_google_auth, 9
pydata_google_auth.cache, 13
pydata_google_auth.exceptions, 15

35

pydata-google-auth Documentation, Release 0.1.0

36 Python Module Index

INDEX

C
CredentialsCache (class in py-

data_google_auth.cache), 13

D
default() (in module pydata_google_auth), 9

G
get_user_credentials() (in module py-

data_google_auth), 10

L
load() (pydata_google_auth.cache.CredentialsCache

method), 13
load() (pydata_google_auth.cache.ReadWriteCredentialsCache

method), 14
load_service_account_credentials() (in module

pydata_google_auth), 11
load_user_credentials() (in module py-

data_google_auth), 12

M
module
pydata_google_auth, 9
pydata_google_auth.cache, 13
pydata_google_auth.exceptions, 15

N
NOOP (in module pydata_google_auth.cache), 14

P
pydata_google_auth

module, 9
pydata_google_auth.cache
module, 13

pydata_google_auth.exceptions
module, 15

PyDataConnectionError, 15
PyDataCredentialsError, 15

R
READ_WRITE (in module pydata_google_auth.cache), 14

ReadWriteCredentialsCache (class in py-
data_google_auth.cache), 14

REAUTH (in module pydata_google_auth.cache), 14

S
save() (pydata_google_auth.cache.CredentialsCache

method), 13
save() (pydata_google_auth.cache.ReadWriteCredentialsCache

method), 14
save() (pydata_google_auth.cache.WriteOnlyCredentialsCache

method), 14
save_user_credentials() (in module py-

data_google_auth), 12

W
WriteOnlyCredentialsCache (class in py-

data_google_auth.cache), 14

37

	Installation
	Conda
	Pip
	Install from Source
	Dependencies

	Introduction
	User credentials
	Sign in to BigQuery

	Default credentials

	Command-line Reference
	Saving user credentials with login
	Loading user credentials with print-token

	API Reference
	Contributing to pydata-google-auth
	Where to start?
	Bug reports and enhancement requests
	Working with the code
	Version control, Git, and GitHub
	Getting started with Git
	Forking
	Creating a branch
	Install in Development Mode
	Conda
	Pip & virtualenv

	Contributing to the code base
	Code standards
	Python (PEP8)
	Backwards Compatibility

	Test-driven development/code writing
	Running the test suite
	Testing on multiple Python versions

	Documenting your code

	Contributing your changes to pydata-google-auth
	Committing your code
	Combining commits
	Pushing your changes
	Review your code
	Finally, make the pull request
	Delete your merged branch (optional)

	Changelog
	1.8.2 / (2023-08-01)
	1.8.1 / (2023-07-10)
	1.8.0 / (2023-05-09)
	1.7.0 / (2023-02-07)
	1.6.0 / (2023-02-07)
	1.5.0 / (2023-01-09)
	1.4.0 / (2022-03-14)
	1.3.0 / (2021-12-03)
	1.2.0 / (2021-04-21)
	1.1.0 / (2020-04-23)
	1.0.0 / (2020-04-20)
	0.3.0 / (2020-02-04)
	0.2.1 / (2019-12-12)
	0.2.0 / (2019-12-12)
	New Features
	Bug Fixes

	0.1.3 / (2019-02-26)
	Bug Fixes

	0.1.2 / (2019-02-01)
	Bug Fixes

	0.1.1 / (2018-10-26)
	0.1.0 / (2018-10-23)

	Privacy
	Google account and user data
	Accessing user data
	Storing user data
	Sharing user data

	Policies for application authors

	Indices and tables
	Python Module Index
	Index

